i Simple Linear Regression: R2

= Given no linear association:

= We could simply use the sample mean to predict E(Y). The variability using
this simple prediction is given by SST (to be defined shortly).

= Given a linear association:
= The use of X'permits a potentially better prediction of Y by using E(Y|X).
= Question: What did we gain by using X?

Let’s examine this question with the following figure



Decomposition of sum of squares




Decomposition of sum of squares

It is always true that: yv.=-yv=0,-y)+(,-¥)

It can be shown that:

i(yi _3_7)2 =§(yi _)A/i)z +S(j>i_)—/)2

SST = SSE + SSR

SST: describes the total variation of the Y.
SSE: describes the variation of the Y; around the regression line.

SSR: describes the structural variation; how much of the variation is due
to the regression relationship.

This decomposition allows a characterization of the usefulness
of the covariate Xin predicting the response variable Y.



Simple Linear Regression: R2

= Given no linear association:

= We could simply use the sample mean to predict E(Y). The variability between the data and
this simple prediction is given as SST.

= Given a linear association:
= The use of X permits a potentially better prediction of Y by using E(Y] X).
= Question: What did we gain by using X?

= Answer: We can answer this by computing the proportion of the total variation that can be
explained by the regression on X

_SSR _SST-SSE _, _SSE

R =— =
SST SST SST

= This RZis, in fact, the correlation coefficient squared.



Examples of R?
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Low values of R? indicate that the model is not adequate. However,
high values of R2do not mean that the model is adequate!!



Cholesterol Example:

Scientific Question: Can we predict cholesterol based on age?

> fit = Im(chol ~ age)
> summary (fit)

Call:
Im(formula = chol ~ age)

Residuals:
Min 10 Median 30 Max
-60.45300 -14.64250 -0.02191 14.65925 58.99527

Coefficients:
Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 166.90168 4.26488 39.134 < 2e-16 ***
age 0.31033 0.07524 4.125 4.52e-05 ***
Signif. codes: 0 ‘“***’ 0.001 “**” 0.01 “*" 0.05 ‘.7 0.1 7 1

Residual standard error- 21 69 on 398 degrees of freedom
Multiple R-squared: 0.04099, Adjusted R-squared: 0.03858
F-statistic: 17/.01 on I and 398 DF, p-value: 4.522e-05

> confint (fit)

2.5 % 97.5 %
(Intercept) 158.5171656 175.2861949
age 0.1624211 0.4582481




Cholesterol Example:

Scientific Question: Can we predict cholesterol based on age?

= R?2=0.04
= What does R? tell us about our model for cholesterol?



Cholesterol Example:
Scientific Question: Can we predict cholesterol based on age?

= R?2=0.04
= What does R? tell us about our model for cholesterol?

= Answer: 4% of the variability in cholesterol is explained by age.
Although mean cholesterol increases with age, there is much more

variability in cholesterol than age alone can explain



Cholesterol Example:

Scientific Question: Can we predict cholesterol based on age?

= Decomposition of Sum of Squares and the F-statistic

Degrees of freedom
Decomposition of the Sum of Squares

Analysis of Variance Ta / Mean Squares: SS/df
Response: chol ____—F-statistic: MSR/MSE

ffSum Sgfj Mean SgjF wvalue Pr (>F)
7

SSR=age 1 8002 8001.7f 17.013 4.522e-05 ***
SSE=Residuals} 39818718 470.3

Signif. codes: 0 “***’ 0,001 ‘“**> 0.01 ‘** 0.05 ‘.7 0.1 ‘7 1

In simple linear regression:
F-statistic = (t-statistic for slope)?

Hypothesis being tested: Hy: $1=0, Hy: B41=0.



i Simple Linear Regression: Assumptions

1. E[Y|x] is related linearly to x

2. Y’ s are independent of each other
5. Distribution of [Y]|x] is normal

4. Var[Y|x] does not depend on X

Linearity
Independence
Normality
Equal variance

Can we assess if these assumptions are valid?
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i Model Checking: Residuals

= (Raw or unstandardized) Residual: difference
(r;) between the observed response and the
predicted response, that is,

=Y, _)A/i
=Y, — (B, + Bx;)

The residual captures the component of the
measurement y; that cannot be “explained” by x.
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i Model Checking: Residuals

s Residuals can be used to

Identify poorly fit data points

Identify unequal variance (heteroscedasticity)

Identify nonlinear relationships

Identify additional variables

Examine normality assumption
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i Model Checking: Residuals

Linearity Plot residual vs X or vs Y

Q: Is there any structure?
Independence

Q: Any scientific concerns?
Normality Residual histogram or qqg-plot

Q: Symmetric? Normal?

Equal variance

Plot residual vs X
Q: Is there any structure?
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i Model Checking: Residuals

= If the linear model is appropriate we should see an
unstructured horizontal band of points centered at
zero as seen in the figure below

- — °
. .- . | J
° Deviation = residual i °

Residuals
0
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Model Checking: Residuals

Residuals
0

2 -1

The model does not provide a ' '
good fit in these cases!

Residuals
0

2 -

0 2 4 6
Violations of the model assumptions? How?

15



Linearity

= The linearity assumption is important: interpretation of the slope
estimate depends on the assumption of the same rate of change in
E(Y|X) over the range of X

= Preliminary Y-X scatter plots and residual plots can help
identify non-linearity

= If linearity cannot be assumed, consider alternatives such as
polynomials, fractional polynomials, splines or categorizing X
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i Independence

= The independence assumption is also important: whether
observations are independent will be known from the study
design

= There are statistical approaches to accommodate
dependence, e.g. dependence that arises from cluster
designs
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Normality

= The Normality assumption can be visually assessed by a histogram of the residuals or a normal
QQ-plot of the residuals

= A QQ-plot is a graphical technique that allows us to assess whether a data set follows a given
distribution (such as the Normal distribution)

= The data are plotted against a given theoretical distribution
- Points should approximately fall in a straight line

- Departures from the straight line indicate departures from the specified distribution.

= However, for moderate to large samples, the Normality assumption can be relaxed

See, e.g., Lumley T et al. The importance of the normality assumption in large public
health data sets. Annu Rev Public Health 2002; 23: 151-169.
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i Equal variance

= Sometimes variance of Y is not constant across the range of X
(heteroscedasticity)

= Little effect on point estimates but variance estimates may be
Incorrect

= This may affect confidence intervals and p-values
= To account for heteroscedasticity we can
= Use robust standard errors

= Transform the data
» Fit @ model that does not assume constant variance (GLM)
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i Robust standard errors

= Robust standard errors correctly estimate variability of parameter
estimates even under non-constant variance

= These standard errors use empirical estimates of the variance in y at each x
value rather than assuming this variance is the same for all x values

= Regression point estimates will be unchanged

= Robust or empirical standard errors will give correct confidence
intervals and p-values
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Cholesterol-Age example: Residuals

Plot of residuals versus fitted values

Structure?
Heteroscedasticity?

-20 0 20 40 60

fitPresiduals

R COMMAND:
plot(fit$fitted, fit$residuals)

-60

fit$fitted

Plot of residuals versus quantiles of a
normal distribution(for n > 30)
Normality?
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I

Sample Quantiles

-60
I
o

R COMMAND:

ggnorm(fit$residuals)

Theoretical Quantiles



Another example

= Linear regression for association between age and triglycerides
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> fit.tg=1lm(TG~age)
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Robust standard errors

= Residual analysis
suggests mean-

variance relationship

= Use robust standard
errors to get correct
variance estimates

fit.tg$residuals

0 100 200 300

-100

150 200

fit.tg$fitted
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Cholesterol example: Robust standard errors

= Linear regression results:

> summary (fit.tqg)

Point estimates

Call:
Im(formula = TG ~ age) are unchanged
Coefficientss

Estimate Ptd. Error t wvalue Pr(>|t])
(Intercept) -53.3059 11.1339 -4.788 2.38e-06 ***
age 4.2090 0.1964 21.429 < 2e-16 *x*

= Results incorporating robust SEs:

> fit.tg.robust = coeftest (fit.tgy,~cov = sandwich)

> fit.tg.robust

t test of coefficients:

td. Error t value Pr(>]|t])
8.73874 -6.100 2.515e-09 **+*
0.18134 23.211 < 2.2e-16 **%*

Estimate
(Intercept) -53.30593
age 4.20896

Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 v " 1




Cholesterol example:

= Linear regression results:

Robust standard errors

> summary (fit.tqg)

Call:
Im(formula = TG ~ age)

Coefficients:

Estimate |Std. Error
(Intercept) -53.3059 11.1339
age 4.2090 0.1964

Standard error:

t value Pr(>|t])
-4.788 2.38e-06 **x*
21.429 < 2e-16 **%*

\"}}

= Results incorporating robu

st SEs: /

> fit.tg.robust = coeftest(fit.t
> fit.tg.robust

t test of coefficients:

g, vcov = sgfidwich)

Estimate |Std. Error
(Intercept) -53.30593 8.73874
age 4.20896 0.18134

t value Pr(>|t])
-6.100 2.515e-09 ***
23.211 < 2.2e-16 ***

Signif. codes: 0 Y***x’ (0,001 ‘*

*r0.01 *r 0.05 Y. 0.1 ¥ " 1
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Transformations

=  Some reasons for using data transformations
= Content area knowledge suggests nonlinearity
= Original data suggest nonlinearity
= Equal variance assumption violated
= Normality assumption violated

= Transformations may be applied to the response, predictor or both
= Be careful with the interpretation of the results

= Rarely do we know which transformation of the predictor provides best
“linear” fit — best to choose transformation on scientific grounds
= As always, there is a danger in using the data to estimate the best
transformation to use

If there is no association of any kind between the response and the predictor, a
“linear” fit (with a zero slope) is the correct one

Trying to detect a transformation is thus an informal test for an association
Multiple testing procedures inflate the Type I error
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observations

| Model Checking: Outliers vs Influential

= Outlier: an observation with a residual that is unusually large
(positive or negative) as compared to the other residuals.

= Influential point: an observation that has a notable influence in
determining the regression equation.

= Removing such a point would markedly change the position of the regression
line.

= Observations that are somewhat extreme for the value of x can be influential.
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QOutlier vs Influential observations

y
8
Point A
6 |} @
Line including Point A
N\
s L Y=0.958+0.81X
> +
Line with Point A removed
2=0.036+1.00x
0 | 1 — | |
0 1 2 3 4 5 6

Point A is an outlier, but is not influential.
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QOutlier vs Influential observations

Line including Point B Point B
$-0.886+0.582*X oint o

Yy 4 -
Line with Point B removed
€-3.694-0.594*X
2 B /
0

Point B is influential, but not an outlier.
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i Cholesterol-Age Example: Residuals

60

40

20

|

60 40 -20 O 20 40 60

Histogram of fit$residuals

fitSresiduals

No extreme outliers
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Model Checking: Deletion diagnostics

AB; =B - PB_; :Delta-beta

AB.
se(B)

Delta-beta

Standardized delta-beta

: Standardized Delta-beta

: tells how much the regression coefficient changed by
excluding the ith observation

: approximates how much the t-statistic for a coefficient
changed by excluding the it" observation
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Cholesterol-Age Example: Deletion diagnostics

> dfb = dfbeta(fit)
> index=order (abs (dfb[,2]),decreasing=T)
> cbind(dfb[index[1:15],],age[index[1;15]1])

(Intercept) age
114 -0.9893663 I0.015268514 34|
166 -0.6827966 0.014888475 78
255 -0.6190643 0.013902713 75
186 -0.8544144 0.013279531 33
113 0.5376293 -0.011943495 76
325 -0.7517511 0.011308451 37
365 0.7676508 -0.011297278 39
257 -0.7374003 0.011092575 37
290 -0.7024787 0.010757541 35
144 0.7120264 -0.010710881 37
197 -0.6784150 0.010469720 34
296 -0.6499386 0.010101515 33
231 -0.6293174 0.009712016 34
7 0.4403297 -0.009524470 79
252 -0.5981020 0.009412761 31

No evidence of influential points. The largest (in absolute value)
delta beta is 0.015 compared to the estimate of 0.31 for the regression coefficient.



Model Checking

= What to do if you find an outlier and/or influential observation:

= Check it for accuracy

= Decide (based on scientific judgment) whether it is best to keep it or omit it
= If you think it is representative, and likely would have appeared in a larger sample, keep it
= If you think it is very unusual and unlikely to occur again in a larger sample, omit it
= Report its existence [whether or not it is omitted]
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Simple Linear Regression:
Impact of Violations of Model Assumptions

Non Non Unequal Dependence
Linearity Normality Variances
Estimates Problematic Little impact for | Little impact Mostly little
most departures. impact
Extreme outliers
can be a
problem.
Tests/ClIs Problematic Little impact for | Variance Variance
most departures. | estimates may estimates may
ClIs for be wrong, but be wrong
correlation are the impact is
sensitive. usually not
dramatic
Correction Choose a Mostly no Use robust Regression for
nonlinear correction standard errors | dependent data
approach needed.
(possible within | Delete outliers (if
the linear warranted) or
regression use robust
framework)

regression
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Exercise

= Work on Exercises 4-6
= Try each exercise on your own
= Make note of any questions or difficulties you have

« At 10:15AM PT we will meet as a group to go over the solutions and discuss your
guestions
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