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Outline: Multiple Linear Regression

n Motivation

n Model and Interpretation

n Estimation and Inference

n Interaction
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Motivation

n The response or dependent variable, Y, may depend on several 
predictors not just one!

n Multiple regression is an attempt to consider the simultaneous
influence of several variables on the response

n This may be with the goal of an unbiased estimate of association or 
for better prediction
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Motivation

n Why not fit multiple separate simple linear regressions?
n If the goal is to estimate the association between the response and 

a predictor of interest, a confounder can make the observed 
association appear

n stronger than the true association,
n weaker than the true association, or 
n even the reverse of the true association

n How can we address this:
n We can adjust for the effects of the confounder by adding a 

corresponding term to our linear regression 

§ If the goal is prediction of the response, we may be able to 
improve prediction by including additional variables in the 
regression model



Motivation: Cholesterol Example

n Data

n Our goal: 
n Investigate the relationship between age (years), BMI (kg/m2) 

and serum total cholesterol (mg/dl)
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> head(cholesterol)

ID  DM age chol BMI  TG APOE rs174548 rs4775401 HTN chd
1   1  74  215 26.2 367    4        1         2   1   1
2   1  51  204 24.7 150    4        2         1   1   1
3   0  64  205 24.2 213    4        0         1   1   1
4   0  34  182 23.8 111    2        1         1   1   0
5   1  52  175 34.1 328    2        0         0   1   0
6   1  39  176 22.7  53    4        0         2   0   0



Motivation

In general, the multiple regression equation can be written as follows: 

n We use multiple variables when: 
n The predictor variable is categorical with more than two groups
n We need polynomials, splines or other functions to model the 

shape of the relationship(s) accurately

n Estimating association:
§ We want to adjust for confounding by other variables
n We want to allow the association to differ for different values of 

other variables (interaction)

§ Prediction: we use multiple variables if we think more than one 
variable will be useful in predicting future outcomes accurately

E[Y | x1,x2,...,xp ] = β0 +β1x1+β2x2 +...+β px p
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Model and Interpretation

n Model: 

where we assume

Extension of simple linear regression!

n Systematic component: 

n Random component:

ppp xxxxxYE ββββ ++++= ...],...,|[ 221101
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Model and Interpretation

n For example, let us assume that there are two predictors in the model and so
E[Y|x1, x2] = b0+ b1 x1 + b2 x2

Consider two observations with the same value for x2, but one observation has x1 one unit 
higher, that is,

Obs 1:  E[Y|x1=k+1, x2=c] = b0+ b1 (k+1) + b2 c
Obs 2:  E[Y|x1=k, x2=c] = b0+ b1 (k) + b2 c

Thus, E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1

That is, b1 is the expected mean change in y per unit change in x1 if x2 is held constant 
(adjusted/controlling for x2)

Similar interpretation applies to b2

8



Model and Interpretation

n To facilitate our discussion let’s assume we have two 
predictors with binary values

n Model:
2211021 ],|[ xxxxYE βββ ++=

Mean of Y X2=0 X2=1

X1=0 b0 b0+b2

X1=1 b0+b1 b0+b1 +b2
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E[Y|x1=1, x2=0] - E[Y|x1=0,x2=0] = b1

E[Y|x1=1, x2=1] - E[Y|x1=0,x2=1] = b1

E[Y|x1=0, x2=1] - E[Y|x1=0,x2=0] = b2

E[Y|x1=1, x2=1] - E[Y|x1=1,x2=0] = b2



Estimation

n Least Squares Estimation: 
n As in linear regression, chooses the coefficient estimates that minimize the residual sum of 

squares

n Computation more difficult, but statistical software (R) will do that for you!
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Estimation and Inference

n Inference
n About regression model parameters   

n Hypothesis Testing H0: bj=0 (j=0,1,2,…,p)

Interpretation: Is there a statistically significant relationship between the response y and xj after 
adjusting for all other factors (predictors) in the model?

Test Statistic:

Note: The square of the t-statistic gives the F-statistic and the test is known as the partial F-Test

n Confidence Intervals
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Estimation and Inference
n About the full model

n Hypotheses 
H0:                                           vs.       H1:  At least one bj is not null 

n Analysis of variance table

Source df SS MS F
Regression p SSR= MSR= SSR/p MSR/MSE

Residual n-p-1 SSE= MSE=
SSE/(n-p-1)

Total n-1 SST=
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Estimation and Inference
n The F-value is tested against a F-distribution with  p, n-p-1 

degrees of freedom
n If we reject the null hypothesis, then the predictors do aid in 

predicting Y [in this analysis we do not know which ones are 
important!]

n Failing to reject the null hypothesis does not mean that none of the 
covariates are important,  since the effect of one or more covariates 
may be "masked" by others. The hard part is choosing which 
covariates to include or exclude. 

n This is known as the global (multiple) F-test
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n We have seen that there is a significant 
relationship between age and cholesterol

n Can we better understand variability in cholesterol 
by incorporating additional covariates?
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Scientific example: Modeling cholesterol using 
age and BMI



Scientific example: Modeling cholesterol using 
age and BMI
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Scientific example: Modeling cholesterol using 
age and BMI

n It appears that BMI increases with increasing age

n And cholesterol increases with increasing BMI

n What if we want to estimate the association 
between age and cholesterol while holding BMI 
constant?

n Multiple regression!

16



> fit2=lm(chol~age+BMI)
> summary(fit2)
Call:
lm(formula = chol ~ age + BMI)

Residuals:
Min      1Q  Median      3Q     Max 

-58.994 -15.793   0.571  14.159  62.992 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 137.1612     9.0061  15.230  < 2e-16 ***
age           0.2023     0.0795   2.544 0.011327 *  
BMI           1.4266     0.3822   3.732 0.000217 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.34 on 397 degrees of freedom
Multiple R-squared: 0.07351, Adjusted R-squared: 0.06884 
F-statistic: 15.75 on 2 and 397 DF,  p-value: 2.62e-07 

Scientific example: Modeling cholesterol using 
age and BMI
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Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n Question: How do we interpret the age coefficient?
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€ 

ˆ y =137.16 + 0.20Age +1.43BMI
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Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n Question: How do we interpret the age coefficient?
n Answer: This is the estimated average difference in 

cholesterol associated with a one year difference in 
age for two subjects with the same BMI.
€ 

ˆ y =137.16 + 0.20Age +1.43BMI



Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n The age coefficient from our simple linear regression model was 
0.31.  

n Question: Why do the estimates from the two models differ?
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€ 

ˆ y =137.16 + 0.20Age +1.43BMI



Scientific example: Modeling cholesterol using 
age and BMI

n Our estimated regression equation is

n The age coefficient from our simple linear regression model was 
0.31.  

n Question: Why do the estimates from the two models differ?
n Answer: We are now conditioning on or controlling for BMI so our 

estimate of the age association is among subjects with the same 
BMI.
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Call:
lm(formula = chol ~ age + BMI)

Residuals:
Min      1Q  Median      3Q     Max 

-58.994 -15.793   0.571  14.159  62.992 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 137.1612     9.0061  15.230  < 2e-16 ***
age           0.2023     0.0795   2.544 0.011327 *  
BMI           1.4266     0.3822   3.732 0.000217 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.34 on 397 degrees of freedom
Multiple R-squared: 0.07351, Adjusted R-squared: 0.06884 
F-statistic: 15.75 on 2 and 397 DF,  p-value: 2.62e-07 

Scientific example: Modeling cholesterol using 
age and BMI
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n Did adding BMI improve our model?

n How does the model with age and BMI compare to a model that 
contains only the mean?

Cholesterol Example:
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> anova(fit,fit2)
Analysis of Variance Table 

Model 1: chol ~ age 
Model 2: chol ~ age + BMI
Res.Df RSS Df Sum of Sq F Pr(>F) 

1 398 187187 
2 397 1 80842 1 6345.8 13.931 0.0002174 *** 
--- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> fit0=lm(chol~1)
> anova(fit0,fit2)
Analysis of Variance Table

Model 1: chol ~ 1
Model 2: chol ~ age + BMI

Res.Df    RSS Df Sum of Sq      F   Pr(>F)    
1    399 195189                                 
2    397 180842  2     14347 15.748 2.62e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



Interaction and Linear Regression

n Statistical interaction (aka effect modification) occurs when the 
relationship between an outcome variable and one predictor is 
different depending on the levels of a second predictor

n Interactions are usually investigated because of a priori
assumptions/hypotheses on the part of the researchers

n Linear regression models allow for the inclusion of interactions with 
cross-product terms
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n Data and scientific understanding help distinguish between 
confounding and effect modifying variables:

n Confounder: Associated with predictor and response; Association between 
response and predictor constant across strata of the new variable

n Effect modifier/interaction: Association between response and the predictor 
varies across strata of the new variable

25

Confounding vs. Interaction/Effect Modification



Confounding vs. Interaction/Effect Modification

n Confounding: Estimates of association from unadjusted 
analysis are markedly different from estimates of 
association from adjusted analysis
n Association within each stratum is similar, but different from the 

“crude” association in the combined data (ignoring the strata)
n In linear regression, these symptoms are diagnostic of confounding

n Effect modification would show differences between 
adjusted analysis and unadjusted analysis, but would also 
show different associations in the different strata
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§ Even if present, effect modification may not always be of interest in 
summarizing the effect of a predictor. 

§ For example, pleconaril, an antiviral drug, reduced the mean 
duration of symptoms in subjects with a common cold due to 
rhinoviruses but had no effect in subjects whose cold was due to 
some other agent. 

§ In the case of the pleconaril, effect modification was important in 
checking that the drug did actually work by inhibiting rhinovirus. 
However, in clinical use of the drug, it would typically not be 
possible to determine the infectious agent (the tests are expensive 
and take longer than just recovering from the cold), and so the 
average effectiveness of the drug across all colds would be a more 
important quantity.

Effect Modification /Interaction



Graphical Representation
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Graphical Representation
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Graphical Representation
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Graphical Representation
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Graphical Representation

32

X

Y

W=0

W=1
[Y

|W
=

1]
[Y

|W
=

0]

[X|W=0] [X|W=1]

Parallel lines No Interaction

W is possibly a 
Confounder



n Assume that there are two predictors in the model 
E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

Consider two observations with the same value, c, for x2, but one observation 
has x1 one unit higher 

Obs 1:  E[Y|x1=k+1, x2=c] = b0+ b1 (k+1) + b2 c + b3 (k+1)c
Obs 2:  E[Y|x1=k, x2=c] = b0+ b1 (k) + b2 c + b3 kc

Thus, E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1 + b3 c 

That is, the difference in means depends now on the value of x2!

Model and Interpretation: interaction
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Model and Interpretation: interaction

n Model: E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

n Difference in Means: 
E[Y|x1=k+1, x2=c] - E[Y|x1=k, x2=c] = b1 + b3 c

The difference in means depends on the value of x2
n The difference in means is b1 if c=0.
n The difference in means is b1+ b3 if c=1
n The difference in means changes by b3 for each unit difference 

in c (that is, in x2)  [that is, b3 is the difference of differences!]
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§ H0: β3=0 tests for interaction 



Model and Interpretation: interaction

n Model: E[Y|x1, x2] = b0+ b1 x1 + b2 x2 +  b3 x1x2

n Another way to look at this

n Factor terms involving x1:
E[Y|x1, x2] = b0+ (b1 + b3 x2)x1 + b2 x2

Slope of x1 changes with x2 , i.e.
Difference in means for each unit difference in x1 changes 

with x2 (for each one unit difference in x2, the difference 
in means changes by b3)
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?
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> fit3 = lm(chol ~ age+DM)
> summary(fit3)

Call:
lm(formula = chol ~ age + DM)

Residuals:
Min      1Q  Median      3Q     Max 

-55.662 -14.482  -1.411  14.682  57.876 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 162.35445    4.24184  38.275  < 2e-16 ***
age           0.29697    0.07313   4.061 5.89e-05 ***
DM           10.50728    2.10794   4.985 9.29e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.06 on 397 degrees of freedom
Multiple R-squared: 0.09748,    Adjusted R-squared: 0.09293 
F-statistic: 21.44 on 2 and 397 DF,  p-value: 1.440e-09 

We first fit the model with age and DM terms only
(No diabetes: DM=0,  With diabetes: DM=1)
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?
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n This model indicates that, after controlling for the 
effect of diabetes, the average cholesterol differs 
by 0.30 for each additional year of age

n The age effect in this model is very similar to the 
effect from our simple linear regression (0.31)

n However, this does not mean that the 
age/cholesterol relationship is the same in people 
with and without diabetes

n To answer this question we must add the 
interaction term
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



> fit4=lm(chol~age*DM)
> summary(fit4)
Call:
lm(formula = chol ~ age * DM)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
DM           14.56271    8.29802   1.755  0.08004 .  
age:DM       -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Model with age and DM main effects, plus interaction effect

40

Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



Call:
lm(formula = chol ~ age * DM)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
DM           14.56271    8.29802   1.755  0.08004 .  
age:DM       -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Mean cholesterol for people 
without diabetes (DM = 0) 
at age 0
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



Difference in mean cholesterol 
between people with and 
without diabetes 
at age 0
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Call:
lm(formula = chol ~ age * DM)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
DM           14.56271    8.29802   1.755  0.08004 .  
age:DM       -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



Difference in mean cholesterol 
associated with each one year 
change in age 
for people without diabetes

43

Call:
lm(formula = chol ~ age * DM)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
DM           14.56271    8.29802   1.755  0.08004 .  
age:DM       -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



Difference in change in mean 
cholesterol associated with 
each one year change in age 
comparing people with and 
without diabetes
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Call:
lm(formula = chol ~ age * DM)

Residuals:
Min      1Q  Median      3Q     Max 

-56.474 -14.377  -1.215  14.764  58.301 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 160.31151    5.86268  27.344  < 2e-16 ***
age           0.33460    0.10442   3.204  0.00146 ** 
DM           14.56271    8.29802   1.755  0.08004 .  
age:DM       -0.07399    0.14642  -0.505  0.61361    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 21.08 on 396 degrees of freedom
Multiple R-squared: 0.09806, Adjusted R-squared: 0.09123 
F-statistic: 14.35 on 3 and 396 DF,  p-value: 6.795e-09

Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



n Interpretation?
n Estimated model: 
160.3 + 0.33 Age + 14.56 Diabetes - 0.07 Age x Diabetes

Subject 1: Age = a+1, diabetes = b
Subject 2: Age = a,     diabetes = b
Difference in the estimated cholesterol: 
[160.3 + 0.33(a+1) + 14.56(b) – 0.07 (a+1)(b)] –

[160.3 + 0.33(a) + 14.56 (b) – 0.07 (a)(b)] = 0.33-0.07b

n Diabetes exerts a small (not statistically significant) 
effect on the age/cholesterol relationship
In people without diabetes: 160.3+0.33 Age
In people with diabetes : 174.9+0.26 Age
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?



n We can also test the significance of interaction 
terms using an F-test

n Adding the interaction term did not significantly 
improve model fit

> anova(fit3,fit4)
Analysis of Variance Table

Model 1: chol ~ age + DM
Model 2: chol ~ age * DM

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1    397 176162                           
2    396 176049  1    113.52 0.2554 0.6136
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Cholesterol Example: Does diabetes affect the 
age – cholesterol relationship?
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Summary

We have considered:

§ Simple linear regression
§ Interpretation
§ Estimation
§ Model checking

§ Multiple linear regression
§ Confounding
§ Interpretation
§ Estimation
§ Interaction



Exercise

n Work on Exercise 7-8
n Try each exercise on your own
n Make note of any questions or difficulties you have 
n At 1:15PT we will meet as a group to go over the solutions and discuss your questions
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